Skip to main content

SELF TRACKING DRONE. How it works?

The Zano flying camera is a great tool for snapping pictures of yourself—and it’s far more sophisticated than a selfie stick. The $300 quadcopter uses a suite of instruments to dodge obstacles while autonomously tracking its subjects whether they’re walking through an office, biking down mountain trails, or even diving off cliffs. Lead engineer Ivan Reedman of Torquing Group advises against underestimating Zano’s abilities: “It’s not just a selfie drone.”

REMOTE CONTROL

 Zano connects to a user’s smartphone via Wi-Fi. Users can pilot the drone using a virtual joystick on their smartphone screen; they can adjust its altitude via a simple slide bar; and they can instruct the camera to stay fixed or rotate to capture different views.

TRACKING OUTDOORS

 In follow mode, a user sets the drone to trail the phone at a fixed distance. Outdoors, Zano establishes and sustains its position relative to the phone using GPS, gyroscopes, accelerometers, sonar, and a barometric pressure sensor that helps it estimate altitude. “Even if you’re moving, Zano will maintain its focus on you,” says Reedman

OBSTACLE AVOIDANCE

 Infrared sensors prevent Zano from crashing into obstacles, but Reedman and his team also designed the drones so they won’t run into one another. Every Zano has a unique identification number, along with a small lowfrequency radio. If one approaches within 150 feet of another, they will recognize each other via radio and adjust their flight paths accordingly.

INVISIBLE TETHER 

To maintain its Wi-Fi connection and comply with aviation regulations, the drone never drifts outside a predetermined maximum distance from the user’s smartphone. “If it gets out of range, it will either land or go to where you were last,” Reedman says

INDOOR AUTONOMY 

Inside, GPS is unreliable, and a slammed door is enough to throw off the barometric sensor, so Zano relies on other techniques. A sonar constantly pings the floor, gauging the drone’s height, and five infrared transceivers bounce signals off the walls and ceiling. The device’s microcontroller parses this data a thousand times per second to determine whether Zano is in the right position—or heading for a wall.

Comments

Popular posts from this blog

How Energy conversion from coal is done?

Single generator sets of over 600 MW are now used in the UK, though there are many smaller generators in use. A 600 MW generator can supplythe average needs of over 1 million UK households. Three or four such generators are typically installed in a single large coal-fired station which isoften sited close to a coal mine, away from the city dwellers who consume the electricity. Such generators are usually driven by a compound arrangement of highpressure, intermediate-pressure and low-pressure turbines, increasing in size as the pressure decreases. Modern turbines rotate in a speed range from 1500 to 3500 r.p.m., usually 3000 r.p.m. for the UK’s 50 Hz system. For large coal-fired plant the steam pressure could be 25 megapascals (MPa) with steam temperatures of 500–600 °C to improve the thermodynamic efficiency. In nuclear reactors, which operate under less demanding conditions, the steam is superheated to about 5 MPa and 300 °C. Modern water tube boilers are complex and have ...

All about Electronics & Instrumentation Engineering)(EI)

  Vision : To be globally recognized as a seat of learning and innovation in Electronics for application to Communication, Transportation, Defence, Industry, Health Care, Entertainment, and many other consumer products.  Mission : 1). To produce quality engineers in the field of Electronics and related domains.  2) To conduct research and develop products in the fields of Chip design, Communication Systems, Electronics Instrumentation, Signal Processing and other related areas with strong emphasis on critical state of the art applications.  3) To grow in the area of Design and Manufacturing of chips, boards and systems.     Program Educational Objectives :  I.  To provide students a successful career in industry that meets the needs of national and multinational companies.  II.  To develop the ability among students to synthesize data and technical concepts for application to electronic product design and to solve real...

5 TOP FACTS LIGHTHOUSES

1  The builder of the Lighthouse of Alexandria, Sostratus – disobeying orders from the pharaoh Ptolemy – engraved his name and a dedication to the sea gods on the tower base. Fame 2  The technical term for the study of lighthouses is ‘pharology’, a word derived from Pharos, the island upon which the great Lighthouse of Alexandria once stood. Academia 3  George Meade built many notable lighthouses in the US during the classical lighthouse period. He is remembered in history as the winning general in the Battle of Gettysburg. War 4  The tallest lighthouse in the world is the Yokohama Marine Tower in Yokohama, Japan. The structure fl ashes alternately green and red every 20 seconds. Tallest 5  Originally lighthouses were lit merely with open fi res, only later progressing through candles, lanterns and electric lights. Lanterns tended to use whale oil as fuel.