Skip to main content

SELF TRACKING DRONE. How it works?

The Zano flying camera is a great tool for snapping pictures of yourself—and it’s far more sophisticated than a selfie stick. The $300 quadcopter uses a suite of instruments to dodge obstacles while autonomously tracking its subjects whether they’re walking through an office, biking down mountain trails, or even diving off cliffs. Lead engineer Ivan Reedman of Torquing Group advises against underestimating Zano’s abilities: “It’s not just a selfie drone.”

REMOTE CONTROL

 Zano connects to a user’s smartphone via Wi-Fi. Users can pilot the drone using a virtual joystick on their smartphone screen; they can adjust its altitude via a simple slide bar; and they can instruct the camera to stay fixed or rotate to capture different views.

TRACKING OUTDOORS

 In follow mode, a user sets the drone to trail the phone at a fixed distance. Outdoors, Zano establishes and sustains its position relative to the phone using GPS, gyroscopes, accelerometers, sonar, and a barometric pressure sensor that helps it estimate altitude. “Even if you’re moving, Zano will maintain its focus on you,” says Reedman

OBSTACLE AVOIDANCE

 Infrared sensors prevent Zano from crashing into obstacles, but Reedman and his team also designed the drones so they won’t run into one another. Every Zano has a unique identification number, along with a small lowfrequency radio. If one approaches within 150 feet of another, they will recognize each other via radio and adjust their flight paths accordingly.

INVISIBLE TETHER 

To maintain its Wi-Fi connection and comply with aviation regulations, the drone never drifts outside a predetermined maximum distance from the user’s smartphone. “If it gets out of range, it will either land or go to where you were last,” Reedman says

INDOOR AUTONOMY 

Inside, GPS is unreliable, and a slammed door is enough to throw off the barometric sensor, so Zano relies on other techniques. A sonar constantly pings the floor, gauging the drone’s height, and five infrared transceivers bounce signals off the walls and ceiling. The device’s microcontroller parses this data a thousand times per second to determine whether Zano is in the right position—or heading for a wall.

Comments

Popular posts from this blog

Hyper Automation (New Technology)

Automation is nothing but an amalgamation of two super technologies of this error RPC and machine learning understanding the automation mechanisms and how it is controlled and coordinated using machine learning MBA main Circus of the screen in the year 2020 automation is employed to have a major macroeconomic implication on the market hence top companies need to give up for this convergence in demographic shapes for now company Wipro and Infosys are experimenting with this technology but other companies are not very far behind..

How ASPs works?

The Web and the Internet began to really heat up and receive significant media exposure starting around 1994. Initially, the Web started as a great way for academics and researchers to distribute information; but as millions of consumers flocked to the Internet, it began to spawn completely new business models. Three good examples of innovative models include:   • Amazon - Amazon (which opened its doors in July, 1995) houses a database of millions of products that anyone can browse at any time. It would have been impossible to compile a list this large in any medium other than the Web.   • Ebay - Online auctions make it easy and inexpensive for millions of people to buy and sell any imaginable item. It would be impossible to do this at a reasonable cost or in a timely manner with any medium other than the Web.   • Epinions - Thousands of people contribute to a shared library of product reviews. One of the Web's greatest strengths is its worldwide view a...

WHY DO WE SLEEP AND DREAM?

•We spend about one-third of our lives sleeping.  •Why do we invest so much time in sleep?  •The most straight forward answer is that, sleep is restorative, and it replenishes the body's energy stores.  •However, intense neural activity during rapid eye movement (REM) sleep, the stage in which most dreams occur, suggests there may be more to the story.  •One theory, which by far has the largest body of evidence, is that sleep plays a critical role in learning and consolidating memories.  •It is probably why infants and toddlers need up to 14 hours of sleep a day, with half of it spent in REM sleep.  •In adults, dreams may also play a role in brain plasticity and learning, which is why sleep-deprived adults perform worse in memory tests and tasks.