Skip to main content

Why do car tires protect you from lightning strikes?

Why do car tires protect you from lightning strikes?

•Car tires do not protect you from lightning strikes. Although the rubber in a tire acts as an insulator at low voltages, the voltage in a lighting bolt is far too high to be stopped by tires or air. 

•No matter how thick your tires are, they don't stop lightning, according to scientists.

•A study states that inside a car can be a safe place to wait out a lighting storm, but it's not because any materials are blocking the lightning.

•Rather, if the car is struck by lightning, its metal frame redirects the electrical current around the sides of the car and into the ground without touching the interior contents. 

•The ability of a hollow conducting object to protect its interior from electrical fields and currents is one of the fundamental principles of electromagnetics. 

•Such an object is called a Faraday cage. For this reason, riding around in a convertible, on a motorbike or on a bicycle during a lightning storm is a bad idea, no matter what kind of tires it has. 

•If you are in a fully-enclosed metal vehicle, you should be protected from the lighting by the Faraday-cage effect.

•However, you should still park the vehicle and wait out the storm since a lightning strike can blow out your tires or blow out your vehicle's electronic control circuits, potentially causing you to crash if you are driving.

•If you are riding in a convertible or roofless vehicle, on a motorbike, or on a bicycle and are caught in a lightning storm, you should quickly seek out the nearest shelter. 

•If a building, tunnel, or other large sheltering structure is not readily available, seek out a low point in the terrain away from water, away from isolated trees, and away from other tall structures (e.g. windmills, power-line towers).

Comments

Popular posts from this blog

HOW CAN WE MOTIVATE OURSELVES MORE EFFECTIVELY THROUGH REINFORCEMENT?

•We'd all like to be more effective in reaching our goals, and according to behaviorists, the way to improve our effectiveness is by rewarding ourselves for the little steps that take us closer and closer to those desirable outcomes.  •First, find something you really like to do or something you'd like to have that can, realistically, serve as a reward.  •Then, take the goal that you are hoping to achieve that, realistically, you could achieve but just haven't succeeded at yet.  •Next, work backward from that goal to your present state.  •Arrange to give yourself those desired rewards as you inch closer from where you are now to the desired end point.  •As you start to make progress, only give yourself a reward when you've moved forward from where you are now.  •For example, if you'd like to cut back on your television watching and instead read more often, reward yourself by allowing yourself to watch television only when you've read for 20 minu...

WHY DO WE SLEEP AND DREAM?

•We spend about one-third of our lives sleeping.  •Why do we invest so much time in sleep?  •The most straight forward answer is that, sleep is restorative, and it replenishes the body's energy stores.  •However, intense neural activity during rapid eye movement (REM) sleep, the stage in which most dreams occur, suggests there may be more to the story.  •One theory, which by far has the largest body of evidence, is that sleep plays a critical role in learning and consolidating memories.  •It is probably why infants and toddlers need up to 14 hours of sleep a day, with half of it spent in REM sleep.  •In adults, dreams may also play a role in brain plasticity and learning, which is why sleep-deprived adults perform worse in memory tests and tasks. 

Inside an MRI scanner

When doctors need the highest quality images possible they turn to MRI scanners, but how do they work? MRI scan ,MRI test, MRI use in medical field, constitutent of MRI machine. Doctors often plan treatments based on imaging. X-rays, ultrasound and CT scans provide useful pictures, but when the highest quality images are needed, they turn to MRI scanners. While CT scanners use x-rays and therefore expose the patient to radiation, magnetic resonance imaging (MRI) uses powerful magnets and is virtually risk free. MRI scans are obtained for many medical conditions, although since they  are expensive and complicated to interpret, they certainly aren’t as easy as taking a chest x-ray. Examples for which they are used include planning surgery for rectal cancers, assessing bones for infection (osteomyelitis), looking at the bile ducts in detail for trapped gallstones, assessing ligamental damage in the knee joints and assessing the spinal cord for infections, tumours or...