Skip to main content

How real is Imaginary?


  • Imaginary numbers can then be represented as corresponding to positions on a vertical line: zero is again in the middle, positive imaginary numbers plotted upward, and negative imaginary numbers plotted downward. Thus imaginary numbers can be thought of as a new kind of number at right angles to ordinary real numbers. Because they are a mathematical construct, they don't need a physical realization; one can't have an imaginary number of oranges or an imaginary credit card bill.

  • One might think this means that imaginary numbers are just a mathematical game having nothing to do with the real world. From the viewpoint of positivist philosophy, however, one cannot determine what is real. All one can do is find which mathematical models describe the universe we live in. It turns out that a mathematical model involving imaginary time predicts not only effects we have already observed but also effects we have not been able to measure yet nevertheless believe in for other reasons. 


  • Einstein's classical (i.e., nonquantum) general theory of relativity combined real time and the three dimensions of space into a four-dimensional spacetime. But the real time direction was distinguished from the three spatial directions; the world line or history of an observer always increased in the real time direction (that is, time always moved from past to future), but it could increase or decrease in any of the three spatial directions. In other words, one could reverse direction in space, but not in time.On the other hand, because imaginary time is at right angles to real time, it behaves like a fourth spatial direction. It can therefore have a much richer range of possibilities than the railroad track of ordinary real time, which can only have a beginning or an end or go around in circles. It is in this imaginary sense that time has a shape.

Comments

Popular posts from this blog

HOW CAN WE MOTIVATE OURSELVES MORE EFFECTIVELY THROUGH REINFORCEMENT?

•We'd all like to be more effective in reaching our goals, and according to behaviorists, the way to improve our effectiveness is by rewarding ourselves for the little steps that take us closer and closer to those desirable outcomes.  •First, find something you really like to do or something you'd like to have that can, realistically, serve as a reward.  •Then, take the goal that you are hoping to achieve that, realistically, you could achieve but just haven't succeeded at yet.  •Next, work backward from that goal to your present state.  •Arrange to give yourself those desired rewards as you inch closer from where you are now to the desired end point.  •As you start to make progress, only give yourself a reward when you've moved forward from where you are now.  •For example, if you'd like to cut back on your television watching and instead read more often, reward yourself by allowing yourself to watch television only when you've read for 20 minu...

WHY DO WE SLEEP AND DREAM?

•We spend about one-third of our lives sleeping.  •Why do we invest so much time in sleep?  •The most straight forward answer is that, sleep is restorative, and it replenishes the body's energy stores.  •However, intense neural activity during rapid eye movement (REM) sleep, the stage in which most dreams occur, suggests there may be more to the story.  •One theory, which by far has the largest body of evidence, is that sleep plays a critical role in learning and consolidating memories.  •It is probably why infants and toddlers need up to 14 hours of sleep a day, with half of it spent in REM sleep.  •In adults, dreams may also play a role in brain plasticity and learning, which is why sleep-deprived adults perform worse in memory tests and tasks. 

Inside an MRI scanner

When doctors need the highest quality images possible they turn to MRI scanners, but how do they work? MRI scan ,MRI test, MRI use in medical field, constitutent of MRI machine. Doctors often plan treatments based on imaging. X-rays, ultrasound and CT scans provide useful pictures, but when the highest quality images are needed, they turn to MRI scanners. While CT scanners use x-rays and therefore expose the patient to radiation, magnetic resonance imaging (MRI) uses powerful magnets and is virtually risk free. MRI scans are obtained for many medical conditions, although since they  are expensive and complicated to interpret, they certainly aren’t as easy as taking a chest x-ray. Examples for which they are used include planning surgery for rectal cancers, assessing bones for infection (osteomyelitis), looking at the bile ducts in detail for trapped gallstones, assessing ligamental damage in the knee joints and assessing the spinal cord for infections, tumours or...