Skip to main content

How super fast Superfast broadband work?

HOW IS FIBRE OPTIC BROADBAND USHERING IN A NEW ERA OF COMMUNICATION?

Remember dial-up internet? Most of us do and it’s not so very long ago that speeds of 56K were considered fast when it came to accessing the delights of the world wide web. And while it may have been fine for checking GeoCities pages and bulletin boards, as our demands and uses of the internet became more complex so higher speeds became more necessary, can you imagine using iTunes or YouTube on a 56K modem? Neither could the service providers who now vie for our attention, trying to find the balance between faster connections and lower prices. Currently the fastest speed on offer in the UK and US and most of Europe lie somewhere between 2MB and 10MB while China, South Korea and Japan lead the way in ‘fibre-to-the-home’ broadband lines. However many western nations such as America, Sweden and Romania are following close behind. Over the next few pages we’ll be explaining fibre optics, the amazing technology behind the new generation of internet connections, so read on to find out just how it works, where you can find it and why some countries are faster than others.


Broadband now

 In most countries, broadband is delivered down copper telephone wire, which suffers from speed, range and breadth restrictions. The wire, which is prevalent across most networks, often dates from the early 20th or even late 19th Century and carries information through electric pulses. This is problematic in terms of maintaining speed at long ranges as all electrical transmissions are subject to high electrical resistance, and information effectiveness is compromised. In addition, electrical transmission lines suffer when tightly packed from crosstalk – a phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates an undesired in another circuit or channel. In short, the system is an ageing one, unable to meet today’s demands.


Superfast broadband explained 

The brand new breed of superfast broadband connections is made possible by switching from copper telephone wires to new fibre optic cables. Fibre optic broadband essentially works by transmitting data as pulses of light from an exchange throughout an optical fibre – a cable consisting of a light-carrying glass core, light-reflecting cladding (to ensure total light retention) and protective buffer coating – before then receiving and decoding that information at the far end with a transceiver. 
A fibre optic line is an excellent medium for communication purposes as it holds numerous advantageous properties over the existing copper-based wiring networks. Most notable is its long-distance data delivery speed, a factor made possible because light propagates through fibre with little attenuation and, obviously, at the speed of light. Further, each fibre optic cable can carry many independent channels of information, each using a different wavelength of light, so the sheer amount of data is increased also.


The last mile 

The term ‘the last mile’ refers to the final leg of delivering broadband communications from a provider to a user. In reality, the last mile may in fact be considerably further than a mile, with many miles separating the two. This is because at this late stage any main cable must be fanned out and split to service numerous separate clients, often living far apart. This is time consuming and carries a large expense. However, if the ‘last mile’ is too great a distance, then the cable infrastructure is rendered useless as it cannot sustain information flow due to speed loss. To address these connectivity issues many operators share and splice networks to reach customers, with cabling varying in type and length depending on where the user is based. This has the obvious drawback that while initially a line from a provider may be fibre optic (carrying data faster and further with less speed loss), at the users’ end, in the ‘last mile’, it may be fanned out onto an old, pre-existing copper line, which, as we’ve mentioned, sustains high-speeds poorly, especially over large distances.






Comments

Popular posts from this blog

HOW CAN WE MOTIVATE OURSELVES MORE EFFECTIVELY THROUGH REINFORCEMENT?

•We'd all like to be more effective in reaching our goals, and according to behaviorists, the way to improve our effectiveness is by rewarding ourselves for the little steps that take us closer and closer to those desirable outcomes.  •First, find something you really like to do or something you'd like to have that can, realistically, serve as a reward.  •Then, take the goal that you are hoping to achieve that, realistically, you could achieve but just haven't succeeded at yet.  •Next, work backward from that goal to your present state.  •Arrange to give yourself those desired rewards as you inch closer from where you are now to the desired end point.  •As you start to make progress, only give yourself a reward when you've moved forward from where you are now.  •For example, if you'd like to cut back on your television watching and instead read more often, reward yourself by allowing yourself to watch television only when you've read for 20 minutes,

15 Did You Know Fact that will surprise you

1) Did you know that this colourful little chap is the Costa Rican Variable Harlequin toad aka the Clown frog. 2) Did you know that the Karni Mata Hindu Temple in Rajasthan, India, is also known as the Temple of Rats. The temple is famous for the approximately 25,000 revered black rats that live there. Visitors play with and feed the rats and even sometimes drink from the same milk and eat the same food. 3) Did you know that vanilla flavoring is sometimes made with the urine of beavers. 4) Did you know that Botox is made from botulinium toxin which is considered the most deadly substance in the World as half a pound would be enough to wipe out the entire World population. Almost all the Botox in use throughout the World is made in one single factory in Ireland. 5) Did you know that tuna swim at a continuous steady rate of about 14km per hour for their whole life until they die. Whilst alive they never stop moving as if they stop they are unab

WHY DO WE SLEEP AND DREAM?

•We spend about one-third of our lives sleeping.  •Why do we invest so much time in sleep?  •The most straight forward answer is that, sleep is restorative, and it replenishes the body's energy stores.  •However, intense neural activity during rapid eye movement (REM) sleep, the stage in which most dreams occur, suggests there may be more to the story.  •One theory, which by far has the largest body of evidence, is that sleep plays a critical role in learning and consolidating memories.  •It is probably why infants and toddlers need up to 14 hours of sleep a day, with half of it spent in REM sleep.  •In adults, dreams may also play a role in brain plasticity and learning, which is why sleep-deprived adults perform worse in memory tests and tasks.