Skip to main content

How OLEDs work?

TVs have come a long way since the massive boxes hogging the corner of your living room. Yet even your current fl at-screen LCD TV will soon look unwieldy compared to the next generation of products. With OLED (organic light-emitting diode) technology TVs, computer monitors, mobile phones and pretty much anything else with a screen are set to become thinner than ever before. OLED is a major step on from the LCD technology that is currently used. In simple terms, it is created from organic materials that emit light when power is passed through it. An OLED display contains thin fi lms of organic materials placed between two conductors; as the current passes through, the display lights up. This self-illuminating function removes the need for the backlight that is an essential requirement of a traditional LCD screen.

There are two kinds of OLED display, of which AMOLED (active matrix) is the most important. Designed for larger displays (over 7cm/3in), it allows for each individual pixel on the screen to be controlled separately.

The three key benefi ts to OLED displays all stem from that lack of a backlight. The immediate consequence is that devices can be made thinner – a 100cm (40in) LCD TV needs a backlight large enough to span and light the entire surface of the screen evenly. Without this problem, the same sized OLEDbased TV could be little more than a few centimetres thick, and as miniaturisation of the other components powering devices develops further, they will only continue to get thinner.

The next benefi t is that without that backlight, the screens draw far less power. While a black image on an LCD display is backlit to the same degree as a
white screen, the light on an AMOLED display directly corresponds to the brightness of each individual pixel. For devices that run on battery power, like mobile phones, this is a massive boon. The fi nal benefi t comes in the form of a massive improvement in image quality, with greater contrast between light and dark colours thanks to the absence of the backlight that turns blacks into dark greys on a traditional LCD.

Of course, thinner hardware is only the fi rst step in what OLED technology will bring us. Through nanotechnology companies like Sony and Toshiba have created screens that measure less than half a millimetre thick, making them extremely fl exible. Imagine a mobile phone with a large screen that can be folded to keep it pocketable, or even wearable computers built into clothing – this is no longer just the stuff of science fiction.





BUY

LG 139 cm (55 inches) 4K UHD Smart LED TV 55UM7290PTD (Ceramic BK + Dark Steel Silver) (2019 Model)


LG 139 cm (55 Inches) 4K UHD OLED Smart TV OLED55B8PTA (Black) (2018 model)

Comments

Popular posts from this blog

How Energy conversion from coal is done?

Single generator sets of over 600 MW are now used in the UK, though there are many smaller generators in use. A 600 MW generator can supplythe average needs of over 1 million UK households. Three or four such generators are typically installed in a single large coal-fired station which isoften sited close to a coal mine, away from the city dwellers who consume the electricity. Such generators are usually driven by a compound arrangement of highpressure, intermediate-pressure and low-pressure turbines, increasing in size as the pressure decreases. Modern turbines rotate in a speed range from 1500 to 3500 r.p.m., usually 3000 r.p.m. for the UK’s 50 Hz system. For large coal-fired plant the steam pressure could be 25 megapascals (MPa) with steam temperatures of 500–600 °C to improve the thermodynamic efficiency. In nuclear reactors, which operate under less demanding conditions, the steam is superheated to about 5 MPa and 300 °C. Modern water tube boilers are complex and have ...

How Bulletproof glass works?

Shattering the science behind what makes the breakable unbreakable Bullet-resistant glass works by absorbing a bullet’s kinetic (movement) energy and dissipating it across a larger area. Multiple layers of toughened glass are reinforced with alternated layers of polycarbonate – a tough but fl exible transparent plastic which retains the see-through properties of glass. As a bullet strikes the fi rst glass layer, the polycarbonate layer behind it forces the glass to shatter internally rather than outwards.  This process absorbs some of the bullet’s kinetic energy. The high velocity impact also fl attens the bullet’s head. Imagine trying to pierce through a sheet of cotton with the top end of a pencil. It would be very diffi cult compared to using the sharp pointed end. The same principle applies here. The fl at-headed bullet struggles to penetrate the layer of polycarbonate. As the bullet travels through each layer of glass and polycarbonate, the process is repeated until it no l...

How Coal mining is done?

Coal miners literally move mountains to feed our insatiable appetite for cheap energy There’s something brutally simple about coal mining. Take away the monstrous new machinery and ecofriendly marketing jargon and it’s the same dirty, dangerous job it’s always been: fi nd the black stuff and dig it up. The two major schools of coal mining are surface mining and underground mining. To qualify for surface mining, the coal seam must lie within 60 metres of the surface. The miners’ job is to remove all of the ‘overburden’ – the cubic tons of rock, soil and trees above the coal seam – and expose the coal layer for extraction. The main tools of the trade are dynamite and dragline excavators, 2,000-ton behemoths that can move 450 tons of material with one swoop of their massive buckets. Perhaps the most dramatic and controversial surface mining technique is Mountaintop Removal (MTR), in which miners use explosives and heavy machinery to literally knock the top off a mountain – up to 200 ...