Skip to main content

A brief history of the Morse code

££) In the early nineteenth century, all of the essential components necessary to construct an electrical communication system had been discovered. The most important of these were the battery by Volta, the relationship between electric current and magnetism by Oersted, and the electromagnet by Henry. It now remained for someone to find a practical method to combine these technologies into a working communication system.

££)Some commercial electrical communications systems existed in Europe as early as the 1830s. A classic example of this is the English ‘Needle Telegraph’. The needle telegraph required two or more lines to form a complete circuit. It was relatively slow and the design of the transmitting and receiving instruments was complex. Something simple and efficient was needed.

££)The Morse system of telegraphy was invented by Samuel Finley Breese Morse (an American painter and founder of the National Academy of Design in New York) in the 1840s in the United States. Morse code is essentially a simple way to represent the letters of the alphabet using patterns of long and short pulses. A unique pattern is assigned to each character of the alphabet, as well as to the ten numerals. An operator using a telegraph key translates these long and short pulses into electrical signals, and a skilled operator, at the distant receiving instrument, translates the electrical signals back into the alphabetic characters. This was demonstrated in 1844 sending the message ‘what hath God wrought’ via an experimental telegraph from Washington DC to Baltimore.
££)In the 1920s automated teleprinter technology had become reliable enough to begin to replace the Morse operator. Manual landline telegraphy was slowly phased out until the 1960s when Western Union and the railroads discontinued use of their last Morse circuits. Morse continued to be used in Canada until the mid-1970s, and railroads in Mexico were still using the wire at least until 1990. A small but hardy group of retired telegraphers and telegraph enthusiasts continues to keep landline Morse alive in the US via a mode called ‘dial-up’ telegraphy.

££)A dot is the basic timing element. A dash is equivalent to three dots. A space between the dots and dashes in a character is equivalent to one dot and the spaces between characters are three dots long. Words are separated by seven dots in length.Note that the most frequently occurring characters have the shortest length and vice versa. This relationship is similar to the relationship between frequency of occurrence of letters and their points value in the game Scrabble.Morse matched the information source (a piece of newspaper text) to the telegraph channel, eliminating some redundancy and efficiently coding the alphabet. This is one of the earliest forms of source coding where the code is matched to the source data. Source coding will be discussed later in the chapter.

Comments

Popular posts from this blog

HOW CAN WE MOTIVATE OURSELVES MORE EFFECTIVELY THROUGH REINFORCEMENT?

•We'd all like to be more effective in reaching our goals, and according to behaviorists, the way to improve our effectiveness is by rewarding ourselves for the little steps that take us closer and closer to those desirable outcomes.  •First, find something you really like to do or something you'd like to have that can, realistically, serve as a reward.  •Then, take the goal that you are hoping to achieve that, realistically, you could achieve but just haven't succeeded at yet.  •Next, work backward from that goal to your present state.  •Arrange to give yourself those desired rewards as you inch closer from where you are now to the desired end point.  •As you start to make progress, only give yourself a reward when you've moved forward from where you are now.  •For example, if you'd like to cut back on your television watching and instead read more often, reward yourself by allowing yourself to watch television only when you've read for 20 minu...

WHY DO WE SLEEP AND DREAM?

•We spend about one-third of our lives sleeping.  •Why do we invest so much time in sleep?  •The most straight forward answer is that, sleep is restorative, and it replenishes the body's energy stores.  •However, intense neural activity during rapid eye movement (REM) sleep, the stage in which most dreams occur, suggests there may be more to the story.  •One theory, which by far has the largest body of evidence, is that sleep plays a critical role in learning and consolidating memories.  •It is probably why infants and toddlers need up to 14 hours of sleep a day, with half of it spent in REM sleep.  •In adults, dreams may also play a role in brain plasticity and learning, which is why sleep-deprived adults perform worse in memory tests and tasks. 

Clouds are just water vapor, so why do they move?

Clouds are just water vapor , so why do they move ? •Clouds are not water vapor. Water vapor is the gas state of H 2 O and is invisible.  •The air around you on a humid summer day is chock full of water vapor, but you don't see any of it.  •On the other hand, there is very little water vapor in the air during the cold of winter, yet you can easily make clouds with your breath.  •Clouds are collections of liquid water droplets or ice that are small enough to float.  •When the water vapor in the air gets cold enough, it condenses back into liquid in the forms of droplets.  •But the condensation is not automatic. It takes a bit of matter – a condensation nucleus – in order to jump start the process. Dust, salt, and ice in the air do the trick by providing a surface for the water to condense on to.  •Clouds are white because the water droplets making the cloud are the right size to scatter light resonantly according to Mie scattering.  •Mie scatte...