Skip to main content

Why optical fibres are used?

∆∆Optical fibre links are being increasingly used for both short-distance communications, such as for local area networks (LANs), and long-distance communications. This arises from the fundamental advantages of optical f ibre communications: 
• They are low cost. 
• They are robust when packaged. 
• They can have very wide optical bandwidths (GHz) and long communication links (hundreds of kilometres).
 • They are insensitive to electromagnetic interference. 

∆∆This has led to the wide range of intercontinental communication links which are several thousand kilometres long, which distance considerably exceeds the maximum length of optical fibre that can be manufactured. It also exceeds the maximum link length over which an optical signal can be propagated without periodic amplification or regeneration. The environment is also somewhat harsh and remote, requiring high reliability and robust packaging.
∆∆The highest frequency was of the order of 1000 GHz. If the frequency is increased to about 1015 Hz, we would find that the signal would literally appear as visible light. Signals in the range 1012–1015 Hz appear as infra-red light, whereas those in the range 1015–1017 Hz appear as ultraviolet light. This raises the question, if we can transmit data using the lower frequency ranges, why should we not communicate at the higher light frequencies? In fact, there is no reason why we should not, but there are difficulties in taking the light from a source to some form of receiving unit within which the carrier could be separated from the basic information signal. There are plenty of materials, such as glass, through which we can pass light. A glass fibre would make a simple conductor of light. The problem is to retain the light within the glass, but it is possible by simple conductor of light. The problem is to retain the light within the glass, but it is possible by simply placing the f ibre within a cladding.

Comments

Popular posts from this blog

How Energy conversion from coal is done?

Single generator sets of over 600 MW are now used in the UK, though there are many smaller generators in use. A 600 MW generator can supplythe average needs of over 1 million UK households. Three or four such generators are typically installed in a single large coal-fired station which isoften sited close to a coal mine, away from the city dwellers who consume the electricity. Such generators are usually driven by a compound arrangement of highpressure, intermediate-pressure and low-pressure turbines, increasing in size as the pressure decreases. Modern turbines rotate in a speed range from 1500 to 3500 r.p.m., usually 3000 r.p.m. for the UK’s 50 Hz system. For large coal-fired plant the steam pressure could be 25 megapascals (MPa) with steam temperatures of 500–600 °C to improve the thermodynamic efficiency. In nuclear reactors, which operate under less demanding conditions, the steam is superheated to about 5 MPa and 300 °C. Modern water tube boilers are complex and have ...

Why swiss Bank is Famous for Black Money?

Hello everyone, here we are going to talk about Swiss Bank. When a person hear the name of this bank the only thing that come to our mind is Black Money. When any kind Fraud occur we hear the name of Swiss Bank and Government also tell that he is going to bring all the black money from Swiss Bank. Swiss Bank is located  in Switzerland and was established in 1872 as Basler bankverein. According to Switzerland banking law bank officials cannot disclose the name of account holder name unless and until Swiss court order them. Swiss court give the order only when there is a criminal charge on account holder name for example money laundering, fraud etc. The account in Swiss Bank are secretive account. Anyone who open a bank account in Swiss Bank he has to complete his KYC as normal bank do. But they never reveal the identity and address of account holders name. The account is in coded digits. In bank statement the account holder name is also not disclosed to any one. Here Swi...

How Bulletproof glass works?

Shattering the science behind what makes the breakable unbreakable Bullet-resistant glass works by absorbing a bullet’s kinetic (movement) energy and dissipating it across a larger area. Multiple layers of toughened glass are reinforced with alternated layers of polycarbonate – a tough but fl exible transparent plastic which retains the see-through properties of glass. As a bullet strikes the fi rst glass layer, the polycarbonate layer behind it forces the glass to shatter internally rather than outwards.  This process absorbs some of the bullet’s kinetic energy. The high velocity impact also fl attens the bullet’s head. Imagine trying to pierce through a sheet of cotton with the top end of a pencil. It would be very diffi cult compared to using the sharp pointed end. The same principle applies here. The fl at-headed bullet struggles to penetrate the layer of polycarbonate. As the bullet travels through each layer of glass and polycarbonate, the process is repeated until it no l...