Skip to main content

Why optical fibres are used?

∆∆Optical fibre links are being increasingly used for both short-distance communications, such as for local area networks (LANs), and long-distance communications. This arises from the fundamental advantages of optical f ibre communications: 
• They are low cost. 
• They are robust when packaged. 
• They can have very wide optical bandwidths (GHz) and long communication links (hundreds of kilometres).
 • They are insensitive to electromagnetic interference. 

∆∆This has led to the wide range of intercontinental communication links which are several thousand kilometres long, which distance considerably exceeds the maximum length of optical fibre that can be manufactured. It also exceeds the maximum link length over which an optical signal can be propagated without periodic amplification or regeneration. The environment is also somewhat harsh and remote, requiring high reliability and robust packaging.
∆∆The highest frequency was of the order of 1000 GHz. If the frequency is increased to about 1015 Hz, we would find that the signal would literally appear as visible light. Signals in the range 1012–1015 Hz appear as infra-red light, whereas those in the range 1015–1017 Hz appear as ultraviolet light. This raises the question, if we can transmit data using the lower frequency ranges, why should we not communicate at the higher light frequencies? In fact, there is no reason why we should not, but there are difficulties in taking the light from a source to some form of receiving unit within which the carrier could be separated from the basic information signal. There are plenty of materials, such as glass, through which we can pass light. A glass fibre would make a simple conductor of light. The problem is to retain the light within the glass, but it is possible by simple conductor of light. The problem is to retain the light within the glass, but it is possible by simply placing the f ibre within a cladding.

Comments

Popular posts from this blog

How Energy conversion from coal is done?

Single generator sets of over 600 MW are now used in the UK, though there are many smaller generators in use. A 600 MW generator can supplythe average needs of over 1 million UK households. Three or four such generators are typically installed in a single large coal-fired station which isoften sited close to a coal mine, away from the city dwellers who consume the electricity. Such generators are usually driven by a compound arrangement of highpressure, intermediate-pressure and low-pressure turbines, increasing in size as the pressure decreases. Modern turbines rotate in a speed range from 1500 to 3500 r.p.m., usually 3000 r.p.m. for the UK’s 50 Hz system. For large coal-fired plant the steam pressure could be 25 megapascals (MPa) with steam temperatures of 500–600 °C to improve the thermodynamic efficiency. In nuclear reactors, which operate under less demanding conditions, the steam is superheated to about 5 MPa and 300 °C. Modern water tube boilers are complex and have ...

How ASPs works?

The Web and the Internet began to really heat up and receive significant media exposure starting around 1994. Initially, the Web started as a great way for academics and researchers to distribute information; but as millions of consumers flocked to the Internet, it began to spawn completely new business models. Three good examples of innovative models include:   • Amazon - Amazon (which opened its doors in July, 1995) houses a database of millions of products that anyone can browse at any time. It would have been impossible to compile a list this large in any medium other than the Web.   • Ebay - Online auctions make it easy and inexpensive for millions of people to buy and sell any imaginable item. It would be impossible to do this at a reasonable cost or in a timely manner with any medium other than the Web.   • Epinions - Thousands of people contribute to a shared library of product reviews. One of the Web's greatest strengths is its worldwide view a...

All about Electronics & Instrumentation Engineering)(EI)

  Vision : To be globally recognized as a seat of learning and innovation in Electronics for application to Communication, Transportation, Defence, Industry, Health Care, Entertainment, and many other consumer products.  Mission : 1). To produce quality engineers in the field of Electronics and related domains.  2) To conduct research and develop products in the fields of Chip design, Communication Systems, Electronics Instrumentation, Signal Processing and other related areas with strong emphasis on critical state of the art applications.  3) To grow in the area of Design and Manufacturing of chips, boards and systems.     Program Educational Objectives :  I.  To provide students a successful career in industry that meets the needs of national and multinational companies.  II.  To develop the ability among students to synthesize data and technical concepts for application to electronic product design and to solve real...