Skip to main content

How do these mechanical monsters puncture holes in the Earth?

A pile driver is a mechanical device used to drive piles – deep-lying structural foundations – into the Earth. Traditionally, pile drivers worked by suspending a large heavy object above the pile needing to be driven into the Earth within a guidance frame, which was then released to freefall upon it before being winched back up for another freefall. Modern pile drivers, however, have evolved and come in three types: diesel hammer, hydraulic hammer and vibratory hammers.

 Diesel pile drivers operate by utilising a piston in conjunction with a cylinder to compress air and fuel on top of an impact block. Due to the resulting contained explosion once ignited, this has the dual effect of driving the below pile into the ground and projecting the above piston back to the top of its housing, ready to fall again under gravity for another drive cycle. This type of pile driver is the most common worldwide as it is relatively cheap to operate  and features a deceptively simple design. It is, however, the most noisy and polluting, and for every cycle, smoke and exhaust fumes are released into the atmosphere post-drive. 

Hydraulic drivers are newer than diesel variants and employ cylinders stocked with hydraulic fl uid where traditionally compressed air and fuel would be used to generate the system’s driving force. These systems are often preferred now in construction as they mitigate the effects of vibration on the pile and surrounding areas, something especially important in built-up areas where other structures may potentially be compromised. Typically, hydraulic pile drivers work within 70 decibels too, which also makes them considerably quieter in operation than diesel or vibration drivers. 

Vibration pile drivers work differently to diesel and hydraulic variants, utilising a series of hydraulically powered, counter-rotating eccentric weights designed to cancel out generated horizontal vibrations, but transmit vertical ones into the below pile, hammering it into the ground. Due to the reduced need for vertical piston clearance on this type of driver they are often used in situations when space is at a premium – for example when adding additional supports to an existing bridge. Depending on the hardness of the Earth, various hammers can be fi tted to these pile drivers, ranging from those that perform 1,200 vibrations per minute, all the way up to 2,400.

Pile drivers

Once released, the piston, which is also a massive weight, free-falls within the cylinder compressing air and fuel added by a fuel pump within.

Pile 

As the piston reaches the impact block the compressed fuel and air is atomised on contact and ignited, driving the pile into the ground.

Cylinder

 The cylinder both acts as a guide for the piston and also sports the system’s exhaust vents, releasing fumes and smoke post-contact.

Impact block

 The compressed air within the cylinder exerts massive force on the impact block, which in turn holds the drive cap against the pile top.

Comments

Popular posts from this blog

How Energy conversion from coal is done?

Single generator sets of over 600 MW are now used in the UK, though there are many smaller generators in use. A 600 MW generator can supplythe average needs of over 1 million UK households. Three or four such generators are typically installed in a single large coal-fired station which isoften sited close to a coal mine, away from the city dwellers who consume the electricity. Such generators are usually driven by a compound arrangement of highpressure, intermediate-pressure and low-pressure turbines, increasing in size as the pressure decreases. Modern turbines rotate in a speed range from 1500 to 3500 r.p.m., usually 3000 r.p.m. for the UK’s 50 Hz system. For large coal-fired plant the steam pressure could be 25 megapascals (MPa) with steam temperatures of 500–600 °C to improve the thermodynamic efficiency. In nuclear reactors, which operate under less demanding conditions, the steam is superheated to about 5 MPa and 300 °C. Modern water tube boilers are complex and have ...

How Bulletproof glass works?

Shattering the science behind what makes the breakable unbreakable Bullet-resistant glass works by absorbing a bullet’s kinetic (movement) energy and dissipating it across a larger area. Multiple layers of toughened glass are reinforced with alternated layers of polycarbonate – a tough but fl exible transparent plastic which retains the see-through properties of glass. As a bullet strikes the fi rst glass layer, the polycarbonate layer behind it forces the glass to shatter internally rather than outwards.  This process absorbs some of the bullet’s kinetic energy. The high velocity impact also fl attens the bullet’s head. Imagine trying to pierce through a sheet of cotton with the top end of a pencil. It would be very diffi cult compared to using the sharp pointed end. The same principle applies here. The fl at-headed bullet struggles to penetrate the layer of polycarbonate. As the bullet travels through each layer of glass and polycarbonate, the process is repeated until it no l...

20 Interesting science fact (PART 2)

1/ Astronauts cannot belch - there is no gravity to separate liquid from gas in their stomachs. 2/ The air at the summit of Mount Everest, 29,029 feet is only a third as thick as the air at sea level. 3/ One million, million, million, million, millionth of a second after the Big Bang the Universe was the size of a ...pea. 4/ DNA was first discovered in 1869 by Swiss Friedrich Mieschler. 5/ The molecular structure of DNA was first determined by Watson and Crick in 1953. 6/ The first synthetic human chromosome was constructed by US scientists in 1997. 7/ The thermometer was invented in 1607 by Galileo. 8/ Englishman Roger Bacon invented the magnifying glass in 1250. 9/ Alfred Nobel invented dynamite in 1866. 10/ Wilhelm Rontgen won the first Nobel Prize for physics for discovering X-rays in 1895. 11/ The tallest tree ever was an Australian eucalyptus - In 1872 it was measured at 435 feet tall. 12/ Christian Barnard performed the first heart transplant i...