Skip to main content

How Hydroelectric power produced?

Water has been used to power man-made mechanisms for hundreds of years, mostly in food production in the form of a mill wheel to grind corn. However, using the kinetic energy of water probably became a reality earlier than you thought. In 1878, inventor Lord Armstrong lit his home in Northumberland using only the power of a nearby waterfall. It’s not until the latter half of the 20th Century that we began to take advantage of the massive potential of hydroelectric power. Intriguingly, both the dirty and environmentally unfriendly coal power plants and clean, green hydro-power use almost identical technology to generate power. Central to a coal-fi red plant is a turbine: coal is burned to produce heat energy, which is used to boil water into steam, which then drives a turbine. Hydroelectric power removes the coal and steam elements and instead, fl owing water turns the blades of each turbine.

 By damming a river next to a drop in elevation and releasing a controlled fl ow (and creating a large body of water behind the dam called a reservoir), you can effectively harness the Earth’s gravity as an energy source. It’s based on the principles discovered by physicist Michael Faraday: when a magnet moves past a conductor, it creates electricity. When the water fl owing through a hydroelectric turbine turns the blades it rotates a shaft attached to a large disk called a rotor at the opposite end. The rotor is made up of loops of wire with current circulating through them, wound around stacks of magnetic steel. When active, the turbine propeller turns the rotor past the conductors located in the static part of the turbine, known as the stator. Modern technology in even a single large turbine (which can weigh thousands of tons) can generate an enormous amount of power, but the cost-effectiveness of building the dam as well as the environmental and economic impact of fl ooding the area behind it can prohibit such ventures. 

Comments

Popular posts from this blog

HOW CAN WE MOTIVATE OURSELVES MORE EFFECTIVELY THROUGH REINFORCEMENT?

•We'd all like to be more effective in reaching our goals, and according to behaviorists, the way to improve our effectiveness is by rewarding ourselves for the little steps that take us closer and closer to those desirable outcomes.  •First, find something you really like to do or something you'd like to have that can, realistically, serve as a reward.  •Then, take the goal that you are hoping to achieve that, realistically, you could achieve but just haven't succeeded at yet.  •Next, work backward from that goal to your present state.  •Arrange to give yourself those desired rewards as you inch closer from where you are now to the desired end point.  •As you start to make progress, only give yourself a reward when you've moved forward from where you are now.  •For example, if you'd like to cut back on your television watching and instead read more often, reward yourself by allowing yourself to watch television only when you've read for 20 minu...

WHY DO WE SLEEP AND DREAM?

•We spend about one-third of our lives sleeping.  •Why do we invest so much time in sleep?  •The most straight forward answer is that, sleep is restorative, and it replenishes the body's energy stores.  •However, intense neural activity during rapid eye movement (REM) sleep, the stage in which most dreams occur, suggests there may be more to the story.  •One theory, which by far has the largest body of evidence, is that sleep plays a critical role in learning and consolidating memories.  •It is probably why infants and toddlers need up to 14 hours of sleep a day, with half of it spent in REM sleep.  •In adults, dreams may also play a role in brain plasticity and learning, which is why sleep-deprived adults perform worse in memory tests and tasks. 

Inside an MRI scanner

When doctors need the highest quality images possible they turn to MRI scanners, but how do they work? MRI scan ,MRI test, MRI use in medical field, constitutent of MRI machine. Doctors often plan treatments based on imaging. X-rays, ultrasound and CT scans provide useful pictures, but when the highest quality images are needed, they turn to MRI scanners. While CT scanners use x-rays and therefore expose the patient to radiation, magnetic resonance imaging (MRI) uses powerful magnets and is virtually risk free. MRI scans are obtained for many medical conditions, although since they  are expensive and complicated to interpret, they certainly aren’t as easy as taking a chest x-ray. Examples for which they are used include planning surgery for rectal cancers, assessing bones for infection (osteomyelitis), looking at the bile ducts in detail for trapped gallstones, assessing ligamental damage in the knee joints and assessing the spinal cord for infections, tumours or...